Dual antennular chemosensory pathways can mediate orientation by Caribbean spiny lobsters in naturalistic flow conditions.
نویسندگان
چکیده
Benthic crustaceans rely on chemical stimuli to mediate a diversity of behaviors ranging from food localization and predator avoidance to den selection, conspecific interactions and grooming. To accomplish these tasks, Caribbean spiny lobsters (Panulirus argus) rely on a complex chemosensory system that is organized into two parallel chemosensory pathways originating in diverse populations of antennular sensilla and projecting to distinct neuropils within the brain. Chemosensory neurons associated with aesthetasc sensilla project to the glomerular olfactory lobes (the aesthetasc pathway), whereas those associated with non-aesthetasc sensilla project to the stratified lateral antennular neuropils and the unstructured median antennular neuropil (the non-aesthetasc pathway). Although the pathways differ anatomically, unique roles for each in odor-mediated behaviors have not been established. This study investigates the importance of each pathway for orientation by determining whether aesthetasc or non-aesthetasc sensilla are necessary and sufficient for a lobster to locate the source of a 2 m-distant food odor stimulus in a 5000-liter seawater flume under controlled flow conditions. To assess the importance of each pathway for this task, we selectively ablated specific populations of sensilla on the antennular flagella and compared the searching behavior of ablated animals to that of intact controls. Our results show that either the aesthetasc or the non-aesthetasc pathway alone is sufficient to mediate the behavior and that neither pathway alone is necessary. Under the current experimental conditions, there appears to be a high degree of functional overlap between the pathways for food localization behavior.
منابع مشابه
Selective ablation of antennular sensilla on the Caribbean spiny lobster Panulirus argus suggests that dual antennular chemosensory pathways mediate odorant activation of searching and localization of food.
In spiny lobsters and other decapod crustaceans, odorant-mediated searching behavior patterns are driven primarily by chemosensory neurons in the antennules. Two groups of antennular chemosensory neurons can be distinguished on the basis of the sensilla that they innervate and their central projections: those that innervate the aesthetasc sensilla on the lateral flagella and project into the gl...
متن کاملThe sensory basis of feeding behaviour in the Caribbean spiny lobster, Panulirus argus
A complex nervous system enables spiny lobsters to have a rich behavioural repertoire. The present paper discusses the ways in which the sensory systems of the Caribbean spiny lobster, Panulirus argus , particularly its chemosensory systems, are involved in feeding behaviour. It addresses the neural mechanisms of three aspects of their food-finding ability: detection, identification, and discri...
متن کاملUltrastructure and physiology of the hooded sensillum, a bimodal chemo-mechanosensillum of lobsters.
The antennules of decapod crustaceans are covered with thousands of chemosensilla that mediate odor discrimination and orientation behaviors. Most studies on chemoreception in decapods have focused on the prominent aesthetasc sensilla. However, previous behavioral studies on lobsters following selective sensillar ablation have revealed that input from nonaesthetasc antennular chemosensilla is s...
متن کاملThe olfactory pathway for individual recognition in the American lobster Homarus americanus.
Individual recognition in the lobster Homarus americanus (Milne-Edwards), is based on detection of urine pheromones via chemoreceptors of the lateral antennular flagellum. The specific sensory pathway mediating this recognition is not known. Most of the chemoreceptor cells of this flagellum are found in the unimodal aesthetasc sensilla and project specifically to the glomeruli of the olfactory ...
متن کاملDefense through sensory inactivation: sea hare ink reduces sensory and motor responses of spiny lobsters to food odors.
Antipredator defenses are ubiquitous and diverse. Ink secretion of sea hares (Aplysia) is an antipredator defense acting through the chemical senses of predators by different mechanisms. The most common mechanism is ink acting as an unpalatable repellent. Less common is ink secretion acting as a decoy (phagomimic) that misdirects predators' attacks. In this study, we tested another possible mec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 207 Pt 21 شماره
صفحات -
تاریخ انتشار 2004